85 research outputs found

    Laboratory Spectroscopy of Astrophysically-Relevant Materials: Developing Dust as a Diagnostic

    Get PDF
    Over forty years ago, observations in the new field of infrared astronomy showed a broad spectral feature at 10 microns; the feature was quickly associated with the presence of silicate-rich dust. Since that time, improvements in infrared astronomy have led to the discovery of a plethora of additional spectral features attributable to dust. By combining these observations with spectroscopic data acquired in the laboratory, astronomers have a diagnostic tool that can be used to explore underlying astronomical phenomena. As the laboratory data improves, so does our ability to interpret the astronomical observations. Here, we discuss some recent progress in laboratory spectroscopy and attempt to identify future research directions

    The Path to Far-IR Interferometry in Space: Recent Developments, Plans, and Prospects

    Get PDF
    The far-IR astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, highresolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of waterbearing planets. The community is united in its support for a space-based interferometry mission. Through concerted efforts worldwide, the key enabling technologies are maturing. Two balloon-borne far-IR interferometers are presently under development. This paper reviews recent technological and programmatic developments, summarizes plans, and offers a vision for space-based far-IR interferometry involving international collaboration

    The Space Infrared Interferometric Telescope (SPIRIT): The Mission Design Solution Space and the Art of the Possible

    Get PDF
    Although the Space Infrared Interferometric Telescope (SPIRIT) was studied as a candidate NASA Origins Probe mission, the real world presents a broader set of options, pressures, and constraints. Fundamentally, SPIRIT is a far-IR observatory for high-resolution imaging and spectroscopy designed to address a variety of compelling scientific questions. How do planetary systems form from protostellar disks, dousing some planets in water while leaving others dry? Where do planets form, and why are some ice giants while others are rocky? How did high-redshift galaxies form and merge to form the present-day population of galaxies? This paper takes a pragmatic look at the mission design solution space for SPIRIT, presents Probe-class and facility-class mission scenarios, and describes optional design changes. The costs and benefits of various mission design alternatives are roughly evaluated, giving a basis for further study and to serve as guidance to policy makers

    Systems, computer-implemented methods, and tangible computer-readable storage media for wide-field interferometry

    Get PDF
    Disclosed herein are systems, computer-implemented methods, and tangible computer-readable storage media for wide field imaging interferometry. The method includes for each point in a two dimensional detector array over a field of view of an image: gathering a first interferogram from a first detector and a second interferogram from a second detector, modulating a path-length for a signal from an image associated with the first interferogram in the first detector, overlaying first data from the modulated first detector and second data from the second detector, and tracking the modulating at every point in a two dimensional detector array comprising the first detector and the second detector over a field of view for the image. The method then generates a wide-field data cube based on the overlaid first data and second data for each point. The method can generate an image from the wide-field data cube

    Attitude Control System for a Balloon Based Telescope

    Get PDF
    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter interferometer which operates on a high-altitude balloon. BETTII had its first successful engineering flight in June 2017. In this paper we discuss the design of the control system for BETTII, which includes the coarse pointing loop and the estimator controls algorithm (Extended Kalman Filter) implemented in FPGA. We will also discuss the different system modes that we defined in the controls system loop, which are used in different phases of the flight and are activated in order to acquire a target star in the science detector. The pointing loop uses different sensors and actuators in each phase to keep pointing at the desired target. The main sensors aregyroscopes, star cameras, and auxiliary sensors such as high-altitude GPS and magnetometers. The azimuth control is achieved with Compensated Controlled Moment Gyros (CCMG) and a Momentum Dump motor. For the elevation control, high-precision motors are used, which change the elevation of the siderostat mirrors. The combination of these instruments keep the baseline oriented within few arcseconds from the target star.In this paper, we will also present the software architecture relevant to the control system. This includes the description of the two flight computers present on the payload and the different control loops that are executed on them. Similarly, we will explain the importance of synchronization between all the sensors and actuators, which have to be referenced to a single master clock in order to obtain science data

    The Wide-Field Spatio-Spectral Interferometer: System Overview, Data Synthesis and Analysis

    Get PDF
    The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. We have used the testbed to observe both geometrically simple and astronomically representative test scenes. Here we present an overview of the astronomical importance of high angular resolution at the far infrared, followed by the description of the optical set-up of WIIT, including the source simulator CHIP (Calibrated Hyperspectral Image Projector). We describe our synthesis algorithms used in the reconstruction of the input test scenes via a simulation of the most recent measurements. The updated algorithms, which include instruments artifacts that allow the synthesis of DF experimental data, are presented and the most recent results analyzed

    Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)

    Get PDF
    The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data

    Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms

    Get PDF
    Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT)

    Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Get PDF
    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans
    • …
    corecore